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Abstract. We propose a closed-form scheme that reproduces aahdde of nonlinear and
hysteretic effects exhibited by sedimentary rocks in towigial bar resonance. In particular, we
correctly describe: hysteretic behavior of a resopaurve on both its upward and downward
slopes; linear softening of resonant frequency witheiase of driving level; gradual (almost
logarithmic) recovery (increase) of resonance frequeaityr large dynamical strains; and
temporal relaxation of response amplitude at fixed frequdnagsther, we are able to describe
how water saturation enhances hysteresis and simultsigetecreases quality factor. The basic
ingredients of the original bar system are assumed twdeoupled subsystems, namely, an
elastic subsystem sensitive to the concentrationtefgrain defects, and a kinetic subsystem of
intergrain defects supporting an asymmetric responsedtieanating internal stress.

INTRODUCTION

Sedimentary rocks, particularly sandstones, arendisished by their grain
structure in which each grain is much harder than thegiatier cementation material
[1]. The peculiarities of grain and pore structures gise to a variety of remarkable
nonlinear mechanical properties demonstrated by rocks, bothuagistatic and
alternating dynamic loading [1-4]. Thus, the hysteresisiezaglstablished for the
stress-strain relation in samples subjected to quasiading-unloading cyclelsas
also been discovered for the relation between aat&lar amplitude and driving
frequency in bar-shaped samples subjected to an alteynexternal drive that is
frequency-swept through resonance. At strong drive ldhel® is an unusual, almost
linear decrease of resonant frequency with strain amplitakt there are long-term
relaxation phenomena such as nearly logarithmic recoieryease) of resonant
frequency after the large conditioning drive has beemvenh

In this paper we present a short sketch of a model [Spr6explaining
numerous experimental observations seen in forced tlatigal oscillations of
sandstone bars. According to our theory a broad setxpérimental data can be
understood as various aspects of the same internallistamispattern [5, 6].
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SOFT-RATCHET MODEL

A reliable probing method widely applied in resonant baregrents is to
drive a horizontally suspended cylindrical sample witleaqelectric force transducer
cemented between one end of the sample and a massikioadcand to
simultaneously measure the sample response with a &sg-accelerometer attached
to the opposite end of the bar [2, 4].

The evolution equation for the field of bar longitudinBdplacementa as
applied to above experimental configuration is assumed to b
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Here we use the Stokes internal friction associatdt wie dissipative function

Od=(y/ 2)[6%/6)«3@2. The quantitiesp and y are, respectively, mean density of

sandstone and coefficient of internal friction. Theess-strain relatior(c —du/dx)
we adopt in the form

o= Esechny _ Esechy @

(r —a)[coshyydu/dx+1]** (r —a)[coshydu/dx+1]""* "’

which for r >a>0 allows us to suppress the bar compressibilitytratirs ou/dx
tending toward+ 0-sechy. Thus, the parametetosh; is assigned for a typical
distance between the centers of neighboring guidiinded by the typical thickness of
intergrain cementation contact. The indirect effetstrain on Young's modulus, as
mediated by the concentrati@nof ruptured intergrain cohesive bonds, is incoapead
in our theory as the main source of all non-tripisénomena.

We introduce a phenomenological relationship betwaefect concentration
and Young's modulus€ . Intuition suggests thaE must be some monotonically
decreasing function of, which can be expanded in a power series witheidsip a
small deviation ofc from its unstrained equilibrium valug, . To lowest informative
approximation we have

E=@-c/c,)E,. 3)
Here c, and E, are the critical concentration of defects and rfaximum possible
value of Young's modulus, respectively.
The equilibrium concentration of defectg associated with a stress is

given by

c, =c,exp(uo/kT), (4)
where the parameter >0 characterizes the intensity of dilatation. Althbugrmula
(4) should supposedly be applicable to the enseofbigcroscopic defects in crystals,
it was derived in the framework of continuum thedyoamic theory that does not
actually need any specification of either the tgp&ize of an elementary defect or the
particular structure of the crystalline matrix. Fbis reason we believe it should also

work for an ensemble of mesoscopic defects in dateded materials, provided that
for a single defect we understand some elementgatyire of intergrain cohesion. The
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approximate functional dependence @f on temperaturd and water saturatios

based on experimental data was treated in [5, 6].

In order to achieve reliable consistency betwdeoty and experiment we
have used the concept of blended kinetics, whiatisfimore-or-less natural physical
justification in consolidated materials [6]. Theed presents the actual concentration
of defectsc as some reasonable superposition of constituentecrationsg , where

each particularg obeys rather simple kinetics. Specifically, weetake constituent
concentrationg to be governed by the kinetic equation:
dg/ot=-[u8(g-g,)+v6(g - 9l( o~ Q). (5)
Here y = p, exp(-U /KT ) andv =y, exp(-W /KT) are the rates of defect annihilation
and defect creation, respectively, afi{z designates the Heaviside step function. A
huge disparityv, >> u, between the priming rates (attack frequencigsynd 1, is

assumed, notwithstanding the native cohesive ptiepeof cementation material.
Typical resonant response experiments [1, 2, 4ijrespond to forced
longitudinal vibration of a bar, which we associaith the boundary conditions:

t 2
u(x=0[t)= D(tycos @+ [ drw()), o (x= L|t)+y% x= Ut)= 0, (6)
X
0
where L is sample length, anB(t i3 driving amplitude. The initial conditions are
ou
u(x|t=0)=0, E(x]t: 0)= 0, g({t= 0F ¢ @)

COMPUTERIZED REPLICASOF ACTUAL EXPERIMENTS

Computer modeling of nonlinear and slow dynamifsces was performed in
the vicinity of the resonance frequendy ,(2yhich we choose to be the second

frequency ( = 2) in the fundamental set,
fO(I):2|4—E1 (1-c,/c,)E, Ip (1=1,2,3,..) )

Figure 1 shows typical resonance curves, i.e.en@dpnces of response
amplitudesR (calculated atx=L) on drive frequencyf =« /27, at successively
higher drive amplitude® . Solid lines correspond to conditioned resonanceesur
calculated after two frequency sweeps were perfdrateeach driving level in order to
achieve repeatable hysteretic curves. The dasimedillustrates an unconditioned
curve obtained without any preliminary conditioningrrows on the three highest
curves indicate sweep directions. To improve thsstitation, results of the computer
simulations were adapted to experimental conditegsropriate to the data obtained
by TenCate and Shankland for Berea sandstone {R]pdrticular, L =03 m

f, (2) =3920Hz, UE, /kcoshy = 275K, coshy = 2300, r =4, a=2.

The shift of resonance frequency as a functiordrdfe amplitude D was
found to follow the almost linear dependence tylp@amaterials with nonclassical
nonlinear response, i.e., materials that possésiseabasic features of slow dynamics
(see [5, 6] for more details).

122

Downloaded 02 Oct 2006 to 128.165.206.18. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



Figure 2 shows the gradual recovery of resonamequéncy f, to its
maximum limiting value f, after the bar has been subjected to high amplitude

conditioning and conditioning was stopped. We djesee the very wide time interval
10< (t-t.)/t, =1000 of logarithmic recovery of the resonant frequerinygcomplete

agreement with experimental results [4]. Hereis the moment when conditioning
switches off andt, = 1ss the time scaling constarturves j = 1,2,3on Figure 2
correspond to successively high water saturatgns 005(2j 1) .
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FIGURE 1. Resonance curve$= 01,2345 FIGURE 2. Time-dependent recovery of
at successively higher driving amplitudegesonant frequency, to its asymptotic value,, .

D, =38(j +0,25J0)10‘8|_, The time to sweep The frequency shiftf, — f, is normalized by both
back and forth within the frequency intervathe asymptotic frequencyf, and the unitless

3700-4100Hz is chosen to b&20s. response amplitud®/ L attained at conditioning
resonance.
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